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In order to formulate a satisfactory QFT it is not sufficient to secure renormaliz- 
ability, but rather superrenormalizability. On the other hand, it is not necessary 
to search for a formalism completely free of infinities. A superren0rmalizable 
QED in n~>4 dimensions may be formulated by introducing a relativistic form 
factor preserving gauge invariance. This formalism is characterized by a running 
coupling constant and is asymptotically free. A relation between the bare and the 
dressed coupling constant is discussed anew. 

1. A HISTORICAL INTRODUCTION 

In 1948 Peierls and McManus (1948) formulated a nonlocal elec- 
trodynamics involving a form factor F(x) in the Lagrangian of interaction 

~'(x)=A,(x)f~(x) (1) 

where 

(2) 

Hereby dx means a four-dimensional volume element, and the integration is 
extended over the whole space-time (unless it is stated explicitly otherwise). 
We may cal l j  ~ andf~ a "true" or an "effective" charge and current density, 
respectively. The Fourier transform of the form factor may depend on k 
only via the square k 2 = k  2 - k  2 

1 fdxr(x)e_i x =I(kVM2 ) (3) 
( 2 7 )  4 

881 

0020-7748/81/1100-0881503.00/0 �9 198I Plenum Pubfishing Corporation 



882 Rayski 

where M is a constant with dimension of mass (in natural units c = h =  1). 
For correspondence reasons it is necessary to assume 

f(0)  = 1 (4) 

so that in the limit M ~  oo the form factor becomes a (four-dimensional) 
Dirac delta function, and the theory goes over into the usual, local elec- 
trodynamics. 

The above modification of electrodynamics spoils neither covariance 
under the Poincar6 group nor gauge invariance. In view of the invariance 
under space and time translations there should exist local conservation laws 
for momentum and energy. The locally conserved quantities were found 
independently by Rzewuski (1953) and Pauli (1953). 

The transformation 

A~ --' A~ + O.O/e 

supplemented by the phase transformation 1 

4~__, e - ig~  

(5) 

(6) 

where 

(9( x )= f dx'O( x')F( x'-- x ) (7) 

leaves the formalism gauge invariant, provided the integration in (7) is 
exchangeable with partial differentiations 

(8) 

This constitutes a condition upon the class of functions O. It is sufficient to 
assume that O decreases quickly at infinity in order to secure (8). Thus, the 
theory is invariant under a slightly restricted gauge group. 

If the Fourier transform (3) of the form factor decreases to zero for 
I k2[-~ o0, the convergence situation may be improved. Nevertheless, this 
QED was abandoned for the following reasons: (i) It presented serious 
difficulties at quantization (Marnelius, 1972), chiefly in connection with the 
problem of chronological ordering of nonlocal interaction terms. (ii) It was 
unable to avoid all the convergence difficulties; in particular it was of no 

I We assume a Dirac spinor field to constitute the sources of the electromagnetic field. 
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help as regards the problem of an infinite vacuum polarization. 2 Also 
higher-order corrections to the electron self-energy remained infinite (while 
the concept of superrenormalizabifity was unknown yet). Last but not least, 
this theory was accused of violating not only microcausality, but even 
macrocausality inasmuch as a relativistically invariant form factor smears 
out the interaction uniformly along the hyperboloids ( x - x ' )  2 = const. 

The above-mentioned difficulties are not decisive. It is possible to 
formulate a quantum theory corresponding closely to the above classical 
nonlocal QED although the mere concept of field equations will lose its 
sense except for free fields. This new theory will be shown to be superrenor- 
malizable and satisfying the requirements of causality. 

2. A S E M I A U T O N O M O U S  S MATRIX 

Let us consider the action integral 

W =  W (~ + W' 

where W (~ is the usual action integral for the free fields A. 
field qJ 

(9) 

and the spinor 

w (~ = fdx ~(o) (]0) 

whereas the interaction term W' will be assumed in a slightly more general 
form in comparison with the form of Peierls et al. 

where 

w'=fdxL? (ll) 

A.(x)= fdxF(x--x')AAx' ) and f"= fclxC(x-x')j"(x') (12) 

where F and G are two form factors. 

2This could be remedied by a more general type of form factor smearing At, +, and 
independently. This, however, spoils the gauge invariance. 
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In spite of the fact that (11) looks as if it represented an integral whose 
integrand is a Lagrangian of interaction 

(13) 

the above theory is not of the usual Lagrangian and Hamiltonian character 
due to the circumstance that the fields A~ and ~ involved in (13) are taken at 
different instants of  time. If it were of the usual character then we could 
quantize it according to the usual rules and derive the operator 

Texpifdxs 

where T denotes an operator of chronological ordering of products 
L'(x)L'(y)... according to whether x ~ is earlier or later than y0. However, 
in consequence of the nonlocal character of the interaction the Lagrangians 
at different points L'(x), L'(y),... do not commute even for spacelike 
distances between x and y, and consequently, the above operator violates 
the relativistic requirements. Thus, the nonlocal theory is not quantizable in 
the usual way. 

One could object that this inconsistency applies only to the formulation 
in the interaction picture whereas a formulation in the Heisenberg picture 
may exist and be correct. However, as was shown by Marnelius (1972) and 
others, it is also not the case. A quantization in the Heisenberg picture using 
the Yang-Feldman (1950) formalism cannot be performed in a consistent 
way either. 

The way out is possible, but requires a bold assumption: we have to 
give up the usual requirements that quantum operators representing the 
fields Ag and + have to satisfy field equations of the same form as their 
classical counterparts do, but define an S matrix (or an operator of evolu- 
tion in time) in an axiomatic way. The only criteria for the autonomous S 
operator are those of existence (finiteness of the matrix elements), unitarity, 
causality, Lorentz covariance, and correspondence. 

Our definition of the S operator is 

S= T TexpiefdxA ft, (14) 
(a) (j) J 

with the fields A~ and ~ satisfying the free field equations and the usual 
commutation relations valid for free fields, in particular 

[A~(x),j~(y)]=O (15) 
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for arbitrary 4-points x and y (which is not the case for the smeared-out 
fields A, and f~). The symbols T(a ) and T(j) involved in (14) denote two 
independent operators of chronological ordering of A~ (but not A,) and j~ 
(but not f~) according to the sequence of their respective arguments. Such 
operators of chronological orderings possess a covariant meaning inasmuch 
as the respective field operators subjected to chronological ordering all 
commute for spacelike distances. 

Thus, the new S operator (14) is a relativistically covariant concept. 
Obviously it satisfies also the requirement of correspondence: First of all, it 
goes over into the usual Dyson's operator in the local limit when both F and 
G become Dirac delta functions. Moreover, it also goes over into the usual 
operator if one of the fields, either the electromagnetic field or the charged 
field, is an external, classical field. In view of a close correspondence of (14) 
with the traditional S operator derivable from a Lagrangian and Hamilto- 
nian electrodynamics, it should be called a semiautonomous rather than 
autonomous S operator. 

It should be stressed that (14) is a definition of the S operator. Such an 
operator is not derivable from some more primary principles (e.g., from a 
SchrSdinger equation or from Heisenberg's equations of motion). If the 
definition (14) is assumed to be a fundamental, primary assumption, then 
the field equations for the interacting field operators in the Heisenberg 
picture do not exist at all. There exist only their classical analogs. 

3. THE OPERATOR OF EVOLUTION IN TIME 

tt is possible and plausible to define--by means of a straightforward 
interpolation--an operator of evolution in finite time intervals, or between 
two spacelike hypersurfaces of measurements % and 0 2. This operator is 

fo~dx A~ S(~ )= T Texp ie  ( x ) j ' ( x )  
( A) (j) (16) 

In this way we do not need to assume that only measurements of 
asymptotic states make sense, but also measurements at an arbitrary time 
instant and states attached to arbitrary spacelike hypersurfaces o are 
meaningful. Inasmuch as only a single integration is extended between finite 
limits (whereas the integrations involved in the "smearing out" of the fields 
are always extended from - oo to + oo), the operator (16) is multiplicative: 

S((~)=S((~)'S((~ ) (17) 



886 Rayski 

which shows that the transformations of the state in the course of time form 
a group. Inasmuch as the generator of the infinitesimal transformations 

L=efd3xA.(x) (x) (18) 

is Hermitian, these transformations are unitary. 
This was rather a formal argument for unitarity. Inasmuch as in 

theories with an infinite number of degrees of freedom it often happens that 
a property which is formally satisfied is violated in practice (e.g., the 
appearance of a nonvanishing photon self-mass in spite of a formal gauge 
invariance) the same may happen with unitarity. But even this mischief 
would not kill the nonlocal QED because a probabilistic interpretation may 
be easily restored by means of a renormalization of probabilities: 

1 
P~__,: = ~( i )  ( i l s * l f ) ( f l s l i )  (19) 

where Pi~f means probability for a transition from I i) at o I to l f )  at 0 2 
while the normalizing factor is 

N( i ) : ( i lS tS l i  ) (19') 

This redefinition may be also stated briefly as follows: only direction but 
not length of vectors in Hilbert space is physically meaningful. 

To be stressed once more: The operator of evolution in time (16) plays 
the same fundamental role in our theory as, e.g., the time-dependent 
Schr/3dinger equation (and Dyson's operator derivable from it) does in the 
usual local theory. The difference is that now the operator (16) is primary 
and not derivable from anything else. 

4. THE GRAPHS AND THE FEYNMAN RULES 

The above formalism leads to the following rules: the usual prescrip- 
tions, graphs, and Feynman rules well known from the local QED hold true 
except for a modification of vertices consisting in a replacement of the 
coupling constant e by 

e-*ef(k)g(k) (20) 

where f and g mean Fourier transforms of the form factors F and G while k 
means the four-momentum of the photon line issuing from or running into 
the vertex in question. 
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In the case of finite limits of integration (o I and o2) we have to take 
g ( p -  q) instead of g(k)  where p and q are the arguments of ~ and q~ while 
an integration of e x p i ( p - q •  between finite limits is still left to be 
performed. 

5. CAUSALITY 

In order to secure causality we assume F and G to be of the form of 
retarded or causal Green's functions (fundamental solutions) of a Klein- 
Gordon equation with a very large mass. Their Fourier transforms are 

f ( k ) =  M2 and g ( k ) =  M2 (21) 
k2 + M 2 k2 + M 2 

with a suitable prescription of bypassing the poles. 
The introduction of causal or retarded form factors may be objected 

since it violates invariance under time reversal. There are two alternatives: 
(i) one may refute the objection by pointing out that one direction along the 
time axis is indeed privileged in nature, so that--sooner or later--one shall 
have to account for this asymmetry also on the level of fundamental (i.e., 
dynamical) physical laws. (ii) It is also possible to restore a full symmetry by 
assuming that the operator (14) or (16) is applicable only for probabilistic 
predictions of the future, whereas for possible retrodictions (of an unknown 
past) one should use another S operator with the retarded (or causal) form 
factors replaced by the advanced (or anticausal) ones. 

6. SUPERRENORMALIZABILITY 

In view of the prescription (20) with (21) it is seen that each propagator 
visualized by an internal photon line acquires a factor (k 2)-5 instead of the 
usual (k2) -1 for [k2]-~ oe. This removes the divergences of the self-energy 
type for the charged particles, but it does not help in the least in the 
problem of the vacuum polarization as visualized by the particle-antiparticle 
closed loop. In fact, this formalism affects only vertices and consequently 
the photon lines, but not the propagator of the electron. However, it is 
easily seen that the higher-order corrections to the vacuum polarization 
yield already finite results. A simple power counting ascertains one that this 
version of QED is superrenormalizable. In superrenormalizable theories 
there are still some infinities left, but they may be removed by means of a 
finite number of counterterms being polynomials (but not infinite series) in 
the coupling constant. As was shown by Glimm and Jaffe (1968) and others, 
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only superrenormalizable theories may be formulated successfully in a 
rigorous and mathematically satisfactory way. 

The traditional models of interactions become superrenormalizable if 
considered in a space-time with a diminished number of dimensions (n = 2  
or n = 3). Our version based on (20) with (21) is superrenormalizable also in 
a six-dimensional space-time. This may be of importance for the so-called 
"grand unification" necessitating a number of additional (compact) dimen- 
sions of space-time. 

7. A RELATION BETWEEN THE BARE AND DRESSED 
COUPLING CONSTANT 

Inasmuch as the above nonlocal theory is superrenormalizable it is 
sufficient to perform a charge renormalization in the lowest order of 
approximation, i.e., to ensure a finite contribution from the simplest vacuum 
polarization graph (one loop) to ensure finiteness of all higher-order contri- 
butions from arbitrarily complicated graphs. 

Assuming the charged particle vacuum, but a presence of an external 
current Jr we get the following equation: 

~ A .  = -- e04  -- e0<01L 10 > (22) 

where e 0 means a bare charge and Jr is the charge and current operator of 
the quantized fields. 

In the lowest order of the perturbation calculus one gets 

(0 I j r l 0 ) = - e o ( b  o - b , [ ]  + b  2[~2 + . . , ) A ,  (23) 

where for the case of a spin-1/2 field 

m 2 1 1 
b o -  and b 1 -  - -  ~ - - - f ~  daei"2~sgna (24) 

3~ 2 187r 2 24~ "2 J-oe a 

It should be noticed that all coefficients b n except for b I are finite. 
Obviously, the meaningless term with b 1 should be absorbed by a charge 
renormalization e 0 -~ e (whereas b 0 is to be removed by a mass renormaliza- 
tion). From (22) and (23) it is seen that the renormalized coupling constant 
is 

e o 
e =  - -  (25) 

l +ble 2 
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The above formula holds true in the lowest order of the perturbation 
calculus, but inasmuch as higher-order corrections are finite, this formula is 
already suitable for a discussion of the problems arising from the ap- 
pearance of infinite integrals. 

Using some estimates more or less equivalent to the formula (25) 
several authors (Landau and Pomeranchuk, 1955) claimed that the renor- 
malized coupling constant e must be exactly zero and consequently the 
usual local QED breaks down completely. On the other hand, an elec- 
trodynamics with a cutoff, i.e., with a finite hi, would be characterized by 
0 < e < e  0 (unless the cutoff is unreasonably large, in which case b 1 may 
become negative). The pretended inequality e < e 0 was explained as follows: 
"the bare charge is screened by a surrounding cloud of virtual particles with 
opposite charge whereas that with equal sign of the charge is removed to 
infinity." 

In our opinion such conclusions ( e 0 > e  and e ~ 0  if the cutoff is 
removed) are erroneous, whereas a correct reasoning runs as follows: 
Starting with a cutoff (i.e., with a finite coefficient fl instead of the infinite 
b t) the equation (25) may be solved with respect to e 0 while e is assumed to 
be finite and known (close to the square root of 1/137). From the two roots 

eo = [1-+-(1-4e2fl )l/2]/2efl (26) 

one has to choose the root with the minus sign since in the l imit/~-,  0 we 
must have e 0 --, e. From this it is seen that by introducing a movable cutoff 
(representing a variable smearing out of the charge) we encounter an effect 
similar to the transitions of the phase (of condensation of the charged 
matter). F o r / ~ <  1 /4e  2 we have one phase, but increasing fl beyond 1 /4e  2 
the bare coupling constant becomes complex 

eo = [1--i(4e2fl--1)1/2]/2ej8 (27) 

which means a change of the phase. The unexpected feature of a complex e 0 
disappears in the limit fl --, oo, i.e., when removing the cutoff. Indeed, with 
increasing B the bare coupling constant tends (like 1/ifl 1/2) to the limit 
e 0 - ,  0 from the domain of imaginary values whereas e remains always finite 
and real, exactly as in the Lee model. 

Inasmuch as after the removal of the cutoff the bare coupling constant 
becomes zero, there are no more problems with unitarity and the whole 
situation becomes intelligible: In order to avoid inconsistencies one has to 
assume a vanishing bare coupling constant! It is just the effect of dressing 
that produces a finite effective coupling from a vanishing bare coupling. 
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However, the limit transition e 0 --, 0 together with the removal of the cutoff 
is a subtle procedure, otherwise we could fall into inconsistencies (either 
e = 0  or e - - ~ ) .  It is clear that by proceeding not carefully enough one can 
easily run into contradictions, e.g., encounter "ghosts," violate unitarity, or 
destroy completely the interaction and obtain a unit S matrix. 

The above analysis does not apply merely to the nonlocal theory but 
also to the usual QED because the form factor (3) or (21) may be regarded 
as another cutoff which has to be removed by the limit transition M --, or at 
the very end, after the charge and mass renormalizations. 

8. O U T L O O K  

A mistake in the early stage of development of quantum field theory 
was that we were too ambitious: we wanted to remove all infinities at once, 
by means of a single paradigm. It explains why the electrodynamics of 
Peierls was rejected or forgotten. Today we see that such ambitions were 
false. As far as ultraviolet divergences are concerned it is sufficient to secure 
a superrenormalizability, and this has been granted by the above-described 
nonlocal modification of QED. 

Another paradigm--certainly not competitive, but rather supplement- 
ing, the above--consists  in introducing a suitable mixture of compensating 
fields which also converts the QED into a superrenormalizable form. We 
shall discuss it elsewhere. 

The possibilities of extending the above formalism to the case of other 
gauge fields exist, are promising, and may explain both asymptotic freedom 
and confinement. 

Let us finally mention the fact that the possibility of introducing a 
form factor of the type of a causal or retarded function for a Kle in -Gordon  
equation with mass M means a departure from an absolute invariance of 
dynamical theories under time reversal. This may be of some interest 
because a privileged direction along the time axis will have to be explained 
- - soone r  or l a t e r - -on  the level of dynamical theories. 
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